Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38076945

RESUMO

Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.

2.
Biol Psychiatry ; 95(2): 175-186, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348802

RESUMO

BACKGROUND: Autism is a heterogeneous neurodevelopmental condition accompanied by differences in brain connectivity. Structural connectivity in autism has mainly been investigated within the white matter. However, many genetic variants associated with autism highlight genes related to synaptogenesis and axonal guidance, thus also implicating differences in intrinsic (i.e., gray matter) connections in autism. Intrinsic connections may be assessed in vivo via so-called intrinsic global and local wiring costs. METHODS: Here, we examined intrinsic global and local wiring costs in the brain of 359 individuals with autism and 279 healthy control participants ages 6 to 30 years from the EU-AIMS LEAP (Longitudinal European Autism Project). FreeSurfer was used to derive surface mesh representations to compute the estimated length of connections required to wire the brain within the gray matter. Vertexwise between-group differences were assessed using a general linear model. A gene expression decoding analysis based on the Allen Human Brain Atlas was performed to link neuroanatomical differences to putative underpinnings. RESULTS: Group differences in global and local wiring costs were predominantly observed in medial and lateral prefrontal brain regions, in inferior temporal regions, and at the left temporoparietal junction. The resulting neuroanatomical patterns were enriched for genes that had been previously implicated in the etiology of autism at genetic and transcriptomic levels. CONCLUSIONS: Based on intrinsic gray matter connectivity, the current study investigated the complex neuroanatomy of autism and linked between-group differences to putative genomic and/or molecular mechanisms to parse the heterogeneity of autism and provide targets for future subgrouping approaches.


Assuntos
Transtorno do Espectro Autista , Substância Branca , Humanos , Substância Cinzenta/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Genômica
3.
J Autism Dev Disord ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079032

RESUMO

PURPOSE: A considerable number of screening and diagnostic tools for autism exist, but variability in these measures presents challenges to data harmonization and the comparability and generalizability of findings. At the same time, there is a movement away from autism symptomatology to stances that capture heterogeneity and appreciate diversity. The International Classification of Functioning, Disability and Health (ICF) provides a classification system that can support content harmonization of different screening and diagnostic tools for autism while enabling the translation of diagnostic information into functioning. METHOD: Here we linked commonly used screening and diagnostic measures within the field of autism to the ICF to facilitate the unification of data obtained from these measures. RESULTS: As expected, screening and diagnostic measures primarily focus on body functions and activities and participation domains of the ICF, and much less on environmental factors, reflecting biomedical and adaptive behavior operationalizations of autism derived from diagnostic manuals. CONCLUSION: By translating symptomology-based information to the continuous and diagnostically neutral view of functioning, the ICF linking presented here may provide a means to harmonize measures of autism characteristics while enabling diagnostic information to be re-examined through a more neurodiversity-affirmative lens.

4.
Mol Autism ; 14(1): 45, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012709

RESUMO

BACKGROUND: Repetitive and restricted behaviors and interests (RRBI) are core symptoms of autism with a complex entity and are commonly categorized into 'motor-driven' and 'cognitively driven'. RRBI symptomatology depends on the individual's clinical environment limiting the understanding of RRBI physiology, particularly their associated neuroanatomical structures. The complex RRBI heterogeneity needs to explore the whole RRBI spectrum by integrating the clinical context [autistic individuals, their relatives and typical developing (TD) individuals]. We hypothesized that different RRBI dimensions would emerge by exploring the whole spectrum of RRBI and that these dimensions are associated with neuroanatomical signatures-involving cortical and subcortical areas. METHOD: A sample of 792 individuals composed of 267 autistic subjects, their 370 first-degree relatives and 155 TD individuals was enrolled in the study. We assessed the whole patterns of RRBI in each individual by using the Repetitive Behavior Scale-Revised and the Yale-Brown Obsessive Compulsive Scale. We estimated brain volumes using MRI scanner for a subsample of the subjects (n = 152, 42 ASD, 89 relatives and 13 TD). We first investigated the dimensionality of RRBI by performing a principal component analysis on all items of these scales and included all the sampling population. We then explored the relationship between RRBI-derived factors with brain volumes using linear regression models. RESULTS: We identified 3 main factors (with 30.3% of the RRBI cumulative variance): Factor 1 (FA1, 12.7%) reflected mainly the 'motor-driven' RRBI symptoms; Factor 2 and 3 (respectively, 8.8% and 7.9%) gathered mainly Y-BOCS related items and represented the 'cognitively driven' RRBI symptoms. These three factors were significantly associated with the right/left putamen volumes but with opposite effects: FA1 was negatively associated with an increased volume of the right/left putamen conversely to FA2 and FA3 (all uncorrected p < 0.05). FA1 was negatively associated with the left amygdala (uncorrected p < 0.05), and FA2 was positively associated with the left parietal structure (uncorrected p = 0.001). CONCLUSION: Our results suggested 3 coherent RRBI dimensions involving the putamen commonly and other structures according to the RRBI dimension. The exploration of the putamen's integrative role in RSBI needs to be strengthened in further studies.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico , Neuroanatomia , Imageamento por Ressonância Magnética , Análise de Componente Principal
5.
Brain Sci ; 13(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002499

RESUMO

Mice are increasingly used as models of human-acquired neurological or neurodevelopmental conditions, such as autism, schizophrenia, and Alzheimer's disease. All these conditions involve central auditory processing disorders, which have been little investigated despite their potential for providing interesting insights into the mechanisms behind such disorders. Alterations of the auditory steady-state response to 40 Hz click trains are associated with an imbalance between neuronal excitation and inhibition, a mechanism thought to be common to many neurological disorders. Here, we demonstrate the value of presenting click trains at various rates to mice with chronically implanted pins above the inferior colliculus and the auditory cortex for obtaining easy, reliable, and long-lasting access to subcortical and cortical complex auditory processing in awake mice. Using this protocol on a mutant mouse model of autism with a defect of the Shank3 gene, we show that the neural response is impaired at high click rates (above 60 Hz) and that this impairment is visible subcortically-two results that cannot be obtained with classical protocols for cortical EEG recordings in response to stimulation at 40 Hz. These results demonstrate the value and necessity of a more complete investigation of central auditory processing disorders in mouse models of neurological or neurodevelopmental disorders.

6.
Mol Autism ; 14(1): 36, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794485

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are neurodevelopmental conditions accompanied by differences in brain development. Neuroanatomical differences in autism are variable across individuals and likely underpin distinct clinical phenotypes. To parse heterogeneity, it is essential to establish how the neurobiology of ASD is modulated by differences associated with co-occurring conditions, such as attention-deficit/hyperactivity disorder (ADHD). This study aimed to (1) investigate between-group differences in autistic individuals with and without co-occurring ADHD, and to (2) link these variances to putative genomic underpinnings. METHODS: We examined differences in cortical thickness (CT) and surface area (SA) and their genomic associations in a sample of 533 individuals from the Longitudinal European Autism Project. Using a general linear model including main effects of autism and ADHD, and an ASD-by-ADHD interaction, we examined to which degree ADHD modulates the autism-related neuroanatomy. Further, leveraging the spatial gene expression data of the Allen Human Brain Atlas, we identified genes whose spatial expression patterns resemble our neuroimaging findings. RESULTS: In addition to significant main effects for ASD and ADHD in fronto-temporal, limbic, and occipital regions, we observed a significant ASD-by-ADHD interaction in the left precentral gyrus and the right frontal gyrus for measures of CT and SA, respectively. Moreover, individuals with ASD + ADHD differed in CT to those without. Both main effects and the interaction were enriched for ASD-but not for ADHD-related genes. LIMITATIONS: Although we employed a multicenter design to overcome single-site recruitment limitations, our sample size of N = 25 individuals in the ADHD only group is relatively small compared to the other subgroups, which limits the generalizability of the results. Also, we assigned subjects into ADHD positive groupings according to the DSM-5 rating scale. While this is sufficient for obtaining a research diagnosis of ADHD, our approach did not take into account for how long the symptoms have been present, which is typically considered when assessing ADHD in the clinical setting. CONCLUSION: Thus, our findings suggest that the neuroanatomy of ASD is significantly modulated by ADHD, and that autistic individuals with co-occurring ADHD may have specific neuroanatomical underpinnings potentially mediated by atypical gene expression.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/genética , Transtorno Autístico/complicações , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Neuroanatomia , Encéfalo/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/complicações , Genômica
7.
Cell ; 186(18): 3747-3752, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657415

RESUMO

A paradigm shift in research culture is required to ease perceived tensions between autistic people and the biomedical research community. As a group of autistic and non-autistic scientists and stakeholders, we contend that through participatory research, we can reject a deficit-based conceptualization of autism while building a shared vision for a neurodiversity-affirmative biomedical research paradigm.


Assuntos
Transtorno Autístico , Pesquisa Biomédica , Humanos , Pesquisa Biomédica/ética , Comportamento , Pesquisa Participativa Baseada na Comunidade
8.
Transl Psychiatry ; 13(1): 270, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500630

RESUMO

Sensory atypicalities are particularly common in autism spectrum disorders (ASD). Nevertheless, our knowledge about the divergent functioning of the underlying somatosensory region and its association with ASD phenotype features is limited. We applied a data-driven approach to map the fine-grained variations in functional connectivity of the primary somatosensory cortex (S1) to the rest of the brain in 240 autistic and 164 neurotypical individuals from the EU-AIMS LEAP dataset, aged between 7 and 30. We estimated the S1 connection topography ('connectopy') at rest and during the emotional face-matching (Hariri) task, an established measure of emotion reactivity, and accessed its association with a set of clinical and behavioral variables. We first demonstrated that the S1 connectopy is organized along a dorsoventral axis, mapping onto the S1 somatotopic organization. We then found that its spatial characteristics were linked to the individuals' adaptive functioning skills, as measured by the Vineland Adaptive Behavior Scales, across the whole sample. Higher functional differentiation characterized the S1 connectopies of individuals with higher daily life adaptive skills. Notably, we detected significant differences between rest and the Hariri task in the S1 connectopies, as well as their projection maps onto the rest of the brain suggesting a task-modulating effect on S1 due to emotion processing. All in all, variation of adaptive skills appears to be reflected in the brain's mesoscale neural circuitry, as shown by the S1 connectivity profile, which is also differentially modulated during rest and emotional processing.


Assuntos
Transtorno do Espectro Autista , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/diagnóstico por imagem , Encéfalo , Emoções , Mapeamento Encefálico , Fenótipo , Imageamento por Ressonância Magnética
9.
Neuroimage Clin ; 39: 103465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37454469

RESUMO

BACKGROUND: Exploring neural network dynamics during social interaction could help to identify biomarkers of Autism Spectrum Disorders (ASD). A cerebellar involvement in autism has long been suspected and recent methodological advances now enable studying cerebellar functioning in a naturalistic setting. Here, we investigated the electrophysiological activity of the cerebro-cerebellar network during real-time social interaction in ASD. We focused our analysis on theta oscillations (3-8 Hz), which have been associated with large-scale coordination of distant brain areas and might contribute to interoception, motor control, and social event anticipation, all skills known to be altered in ASD. METHODS: We combined the Human Dynamic Clamp, a paradigm for studying realistic social interactions using a virtual avatar, with high-density electroencephalography (HD-EEG). Using source reconstruction, we investigated power in the cortex and the cerebellum, along with coherence between the cerebellum and three cerebral-cortical areas, and compared our findings in a sample of participants with ASD (n = 107) and with typical development (TD) (n = 33). We developed an open-source pipeline to analyse neural dynamics at the source level from HD-EEG data. RESULTS: Individuals with ASD showed a significant increase in theta band power over the cerebellum and the frontal and temporal cortices during social interaction compared to resting state, along with significant coherence increases between the cerebellum and the sensorimotor, frontal and parietal cortices. However, a phase-based connectivity measure did not support a strict activity increase in the cortico-cerebellar functional network. We did not find any significant differences between the ASD and the TD group. CONCLUSIONS: This exploratory study uncovered increases in the theta band activity of participants with ASD during social interaction, pointing at the presence of neural interactions between the cerebellum and cerebral networks associated with social cognition. It also emphasizes the need for complementary functional connectivity measures to capture network-level alterations. Future work will focus on optimizing artifact correction to include more participants with TD and increase the statistical power of group-level contrasts.


Assuntos
Transtorno do Espectro Autista , Humanos , Mapeamento Encefálico , Interação Social , Imageamento por Ressonância Magnética , Vias Neurais , Cerebelo
10.
Nat Med ; 29(7): 1671-1680, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365347

RESUMO

While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Fenótipo , Heterozigoto , Encéfalo
11.
Front Mol Neurosci ; 16: 1139118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008785

RESUMO

Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.

12.
Eur J Med Genet ; 66(7): 104754, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37003575

RESUMO

Phelan-McDermid syndrome (PMS) is an infrequently described syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities. As part of the development of European medical guidelines we studied the definition, phenotype, genotype-phenotype characteristics, and natural history of the syndrome. The number of confirmed diagnoses of PMS in different European countries was also assessed and it could be concluded that PMS is underdiagnosed. The incidence of PMS in European countries is estimated to be at least 1 in 30,000. Next generation sequencing, including analysis of copy number variations, as first tier in diagnostics of individuals with intellectual disability will likely yield a larger number of individuals with PMS than presently known. A definition of PMS by its phenotype is at the present not possible, and therefore PMS-SHANK3 related is defined by the presence of SHANK3 haploinsufficiency, either by a deletion involving region 22q13.2-33 or a pathogenic/likely pathogenic variant in SHANK3. In summarizing the phenotype, we subdivided it into that of individuals with a 22q13 deletion and that of those with a pathogenic/likely pathogenic SHANK3 variant. The phenotype of individuals with PMS is variable, depending in part on the deletion size or whether only a variant of SHANK3 is present. The core phenotype in the domains development, neurology, and senses are similar in those with deletions and SHANK3 variants, but individuals with a SHANK3 variant more often are reported to have behavioural disorders and less often urogenital malformations and lymphedema. The behavioural disorders may, however, be a less outstanding feature in individuals with deletions accompanied by more severe intellectual disability. Data available on the natural history are limited. Results of clinical trials using IGF-1, intranasal insulin, and oxytocin are available, other trials are in progress. The present guidelines for PMS aim at offering tools to caregivers and families to provide optimal care to individuals with PMS.


Assuntos
Transtornos Cromossômicos , Deficiência Intelectual , Humanos , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteínas do Tecido Nervoso/genética , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Deleção Cromossômica , Fenótipo , Síndrome , Cromossomos Humanos Par 22/genética
13.
Mol Psychiatry ; 28(5): 2158-2169, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36991132

RESUMO

Individuals with autism spectrum disorder (henceforth referred to as autism) display significant variation in clinical outcome. For instance, across age, some individuals' adaptive skills naturally improve or remain stable, while others' decrease. To pave the way for 'precision-medicine' approaches, it is crucial to identify the cross-sectional and, given the developmental nature of autism, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 autistic and 172 neurotypical individuals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behaviour Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. Autistic participants were grouped into clinically meaningful "Increasers", "No-changers", and "Decreasers" in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup's neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences' potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with autism and for genes previously linked to neurobiological pathways implicated in autism (e.g. excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e. intra-individual change in clinical profiles) linked to autism core symptoms are associated with atypical cross-sectional and longitudinal, i.e. developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g. targeting mechanisms linked to relatively poorer outcomes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Seguimentos , Neuroanatomia , Estudos Transversais
14.
Eur J Med Genet ; 66(5): 104732, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36822569

RESUMO

SHANK3-related Phelan-McDermid syndrome (PMS) is caused by a loss of the distal part of chromosome 22, including SHANK3, or by a pathological SHANK3 variant. There is an important genetic and phenotypic diversity among patients who can present with developmental delay, language impairments, autism, epilepsy, and other symptoms. SHANK3, encoding a synaptic scaffolding protein, is deleted in the majority of patients with PMS and is considered a major gene involved in the neurological impairments of the patients. However, differences in deletion size can influence clinical features, and in some rare cases, deletions at the 22q13 locus in individuals with SHANK3-unrelated PMS do not encompass SHANK3. These individuals with SHANK3-unrelated PMS still display a PMS-like phenotype. This suggests the participation of other 22q13 genes in the pathogenesis of PMS. Here, we review the biological function and potential implication in PMS symptoms of 110 genes located in the 22q13 region, focusing on 35 genes with evidence for association with neurodevelopmental disorders, including 13 genes for epilepsy and 11 genes for microcephaly and/or macrocephaly. Our review is restricted to the 22q13 region, but future large-scale studies using whole genome sequencing and deep-phenotyping are warranted to develop predictive models of clinical trajectories and to target specific medical and educational care for each individual with PMS.


Assuntos
Transtornos Cromossômicos , Humanos , Transtornos Cromossômicos/patologia , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Fenótipo
15.
Transl Psychiatry ; 13(1): 18, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681677

RESUMO

The excitatory/inhibitory (E/I) imbalance hypothesis posits that imbalance between excitatory (glutamatergic) and inhibitory (GABAergic) mechanisms underlies the behavioral characteristics of autism. However, how E/I imbalance arises and how it may differ across autism symptomatology and brain regions is not well understood. We used innovative analysis methods-combining competitive gene-set analysis and gene-expression profiles in relation to cortical thickness (CT) to investigate relationships between genetic variance, brain structure and autism symptomatology of participants from the AIMS-2-TRIALS LEAP cohort (autism = 359, male/female = 258/101; neurotypical control participants = 279, male/female = 178/101) aged 6-30 years. Using competitive gene-set analyses, we investigated whether aggregated genetic variation in glutamate and GABA gene-sets could be associated with behavioral measures of autism symptoms and brain structural variation. Further, using the same gene-sets, we corelated expression profiles throughout the cortex with differences in CT between autistic and neurotypical control participants, as well as in separate sensory subgroups. The glutamate gene-set was associated with all autism symptom severity scores on the Autism Diagnostic Observation Schedule-2 (ADOS-2) and the Autism Diagnostic Interview-Revised (ADI-R) within the autistic group. In adolescents and adults, brain regions with greater gene-expression of glutamate and GABA genes showed greater differences in CT between autistic and neurotypical control participants although in opposing directions. Additionally, the gene expression profiles were associated with CT profiles in separate sensory subgroups. Our results suggest complex relationships between E/I related genetics and autism symptom profiles as well as brain structure alterations, where there may be differential roles for glutamate and GABA.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adulto , Adolescente , Humanos , Masculino , Feminino , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Transcriptoma , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética
16.
Br J Psychiatry ; 222(3): 100-111, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700346

RESUMO

BACKGROUND: Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD. AIMS: Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. METHOD: Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.6 years of age) and 181 typically developing participants (7.6-30.8 years of age). RESULTS: Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD. CONCLUSIONS: Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Recompensa , Imageamento por Ressonância Magnética/métodos
17.
Am J Psychiatry ; 180(1): 50-64, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36415971

RESUMO

OBJECTIVE: The male preponderance in prevalence of autism is among the most pronounced sex ratios across neurodevelopmental conditions. The authors sought to elucidate the relationship between autism and typical sex-differential neuroanatomy, cognition, and related gene expression. METHODS: Using a novel deep learning framework trained to predict biological sex based on T1-weighted structural brain images, the authors compared sex prediction model performance across neurotypical and autistic males and females. Multiple large-scale data sets comprising T1-weighted MRI data were employed at four stages of the analysis pipeline: 1) pretraining, with the UK Biobank sample (>10,000 individuals); 2) transfer learning and validation, with the ABIDE data sets (1,412 individuals, 5-56 years of age); 3) test and discovery, with the EU-AIMS/AIMS-2-TRIALS LEAP data set (681 individuals, 6-30 years of age); and 4) specificity, with the NeuroIMAGE and ADHD200 data sets (887 individuals, 7-26 years of age). RESULTS: Across both ABIDE and LEAP, features positively predictive of neurotypical males were on average significantly more predictive of autistic males (ABIDE: Cohen's d=0.48; LEAP: Cohen's d=1.34). Features positively predictive of neurotypical females were on average significantly less predictive of autistic females (ABIDE: Cohen's d=1.25; LEAP: Cohen's d=1.29). These differences in sex prediction accuracy in autism were not observed in individuals with ADHD. In autistic females, the male-shifted neurophenotype was further associated with poorer social sensitivity and emotional face processing while also associated with gene expression patterns of midgestational cell types. CONCLUSIONS: The results demonstrate an increased resemblance in both autistic male and female individuals' neuroanatomy with male-characteristic patterns associated with typically sex-differential social cognitive features and related gene expression patterns. The findings hold promise for future research aimed at refining the quest for biological mechanisms underpinning the etiology of autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Masculino , Feminino , Transtorno Autístico/genética , Neuroanatomia , Encéfalo/diagnóstico por imagem , Cognição , Expressão Gênica/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia
18.
Biol Psychiatry ; 93(1): 45-58, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372570

RESUMO

BACKGROUND: Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. Genetically informed approaches have been implemented in neuroimaging studies to address this issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and compare the effect sizes on brain connectivity of psychiatric genomic risk factors with various levels of complexity: oligogenic copy number variants (CNVs), multigenic CNVs, and polygenic risk scores (PRSs) as well as idiopathic psychiatric conditions and traits. METHODS: Resting-state functional magnetic resonance imaging data were processed using the same pipeline across 9 datasets. Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRSs, 4 idiopathic psychiatric conditions (1022 individuals with autism, schizophrenia, bipolar conditions, or attention-deficit/hyperactivity disorder), and 2 traits (31,424 unaffected control subjects). RESULTS: Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2-0.65 z score), followed by psychiatric conditions (0.15-0.42), neuroticism and fluid intelligence (0.02-0.03), and PRSs (0.01-0.02). Effect sizes of CNVs on connectivity were correlated to their effects on cognition and risk for disease (r = 0.9, p = 5.93 × 10-6). However, effect sizes of CNVs adjusted for the number of genes significantly decreased from small oligogenic to large multigenic CNVs (r = -0.88, p = 8.78 × 10-6). PRSs had disproportionately low effect sizes on connectivity compared with CNVs conferring similar risk for disease. CONCLUSIONS: Heterogeneity and polygenicity affect our ability to detect brain connectivity alterations underlying psychiatric manifestations.


Assuntos
Heterogeneidade Genética , Psiquiatria , Humanos , Predisposição Genética para Doença , Herança Multifatorial/genética , Encéfalo/diagnóstico por imagem , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla
19.
Autism Res ; 16(2): 364-378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464763

RESUMO

As an integral part of autism spectrum symptoms, sensory processing issues including both hypo and hyper sensory sensitivities. These sensory specificities may result from an excitation/inhibition imbalance with a poorly understood of their level of convergence with genetic alterations in GABA-ergic and glutamatergic pathways. In our study, we aimed to characterize the hypo/hyper-sensory profile among autistic individuals. We then explored its link with the burden of deleterious mutations in a subset of individuals with available whole-genome sequencing data. To characterize the hypo/hyper-sensory profile, the differential Short Sensory Profile (dSSP) was defined as a normalized and centralized hypo/hypersensitivity ratio from the Short Sensory Profile (SSP). Including 1136 participants (533 autistic individuals, 210 first-degree relatives, and 267 controls) from two independent study samples (PARIS and LEAP), we observed a statistically significant dSSP mean difference between autistic individuals and controls, driven mostly by a high dSSP variability, with an intermediated profile represented by relatives. Our genetic analysis tended to associate the dSSP and the hyposensitivity with mutations of the GABAergic pathway. The major limitation was the dSSP difficulty to discriminate subjects with a similar quantum of hypo- and hyper-sensory symptoms to those with no such symptoms, resulting both in a similar ratio score of 0. However, the dSSP could be a relevant clinical score, and combined with additional sensory descriptions, genetics and endophenotypic substrates, will improve the exploration of the underlying neurobiological mechanisms of sensory processing differences in autism spectrum.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtornos Globais do Desenvolvimento Infantil , Criança , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Sensação , Percepção
20.
Brain ; 146(4): 1686-1696, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36059063

RESUMO

Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.


Assuntos
Conectoma , Transtornos Mentais , Humanos , Pleiotropia Genética , Imageamento por Ressonância Magnética , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA